AWS Cloud Computing
Project Report

DocAl Organizer

Organizing documents with Al

Author: Henri Cerio-Cain

Date: December 18%", 2025

1. Project Introduction

1.1 Overview

DocAl Organizer is a straightforward, yet effective cloud application designed to assist with
a task almost everyone has done in their lives: document organization. This often tedious
task was something | identified as ideal for automation using Al, by taking a task that
normally requires hours of work and reducing it to seconds. Users create custom folder
structures, upload their documents, Al automatically classifies and organizes files based on
content analysis, and download the new, organized folder structure with all files present.

1.2 Features

At a high level, users automate document organization by creating the desired file structure,
uploading their documents, and pressing "Organize." Google Gemini 2.5 Flash model then
analyzes each document's content and automatically places it into the appropriate folder
based on the structure provided. Once complete, users can preview files in the browser,
make any needed adjustments, and download everything as a ZIP file that maintains their
folder structure.

To handle different needs, users can create as many folder structures as they want through
something called “conversations”. Each conversation acts like a separate space with its own
folder tree, saving the progress of each conversation with the ability to also search for them
through their name, which is also customizable. All of these are stored in the users’
accounts, so with a simple login, users can access everything securely.

1.3 Target Users

DocAl Organizer is targeted for a large set of users. Students, office workers, or even just
someone who wants to tidy up their computer can all benefit from using this product. Built
on the web allows for all sorts of devices to be able to access DocAl Organizer ubiquitously.

1.4 Performance Requirements

With an application surrounding automating the organization of PDFs through Al, it’s clear
that this process must be faster than manual organization for it to be feasible for real-world
use. Selecting Google Gemini’s 2.5 Flash model allows for speedy yet accurate PDF
organization, which in practise, allowed for sub-30-second completion of variable file
counts. During this process of organizing documents, another sub-requirement is that the
website remains responsive to ensure a professional user experience. While the application
architecture is built on AWS Lambda, which is notorious for cold starts, the system is aimed

to handle cold starts gracefully with automatic scaling for variable user counts, with a target
response time under 3 seconds, with the Al organization being the longest operation.

2. AWS Service Stack

DocAl Organizer was built with four main AWS services: Lambda, S3, APl Gateway and
DynamoDB. This technology stack was meticulously chosen to leverage the application’s
philosophy with services that minimize cost, while maintaining a professional user
experience.

2.1 Compute Service

AWS Lambda was used for the backend of the cloud application, executing code based on
the HTTP requests made from the APl Gateway. It handles all the endpoints of the app, from
user registration to deleting a file, and it is the bridge that handles S3 and DynamoDB
operations made by the user. Given the nature of the app being a simple automation task,
Lambda made the most sense out of all other options, due to the parallels between their use

cases.

Despite it working almost perfectly, the nature of AWS Lambda means cold starts, which
means slightly slow responses, for which EC2 was heavily considered. While EC2 would give
DocAl Organizer a much faster response time, many downsides would come with choosing
it over Lambda. EC2’s cost structure is time-based, and not when used, compared to
Lambda. EC2 also comes with server maintenance, security updates and scaling
configuration, and with the nature of document organization being a sporadic activity, and
not constant, EC2’s benefits are negligible in comparison to the downsides.

2.2 Storage Service

Amazon Simple Storage Service (S3) was used to store users ' PDFs and documents on the
cloud. S3 was the smartest approach, | feel, to store documents. Elastic File System (EFS),
when compared to S3, came with higher rates. DynamoDB binary storage has file size
constraints, which conflict with the nature of the cloud app, as PDF’s vary in size. On top of
other alternatives not making sense, S3 also came with future-proof scalability. Not only
does it allow for unlimited size scalability for users to upload as many documents as they
want, S3 also allows for direct file upload via URLs and is extremely cost-effective for large
files, which PDFs usually fall under. The storage cost is only $0.023 per GB per month, which
means even storing thousands of PDFs costs almost nothing [5].

2.3 Network Delivery

API Gateway was used to route HTTP requests made to the AWS Lambda. It effectively listens
for requests made and based on the request, routes these requests to the lambda function.
I primarily went with APl Gateway as | have used it in the past, so | was already familiar with

configuringit. In union to experience, APl Gateway also works in harmony with AWS Lambda.
API Gateway handles request validation, ensuring that all required parameters are present
before sending data over to Lambda. This prevents malformed requests immediately, which
saves the cost of running Lambda.

2.4 Database Service

Amazon DynamoDB was used as the database management system. It’s used for storing
user credentials and history. It was the most attractive option out of all the DBMS Amazon
offers, from its autoscaling and serverless pricing, which is perfect given the nature of this
application. The architecture of the database consists of a user’s table, which stores a user’s
email, hash and metadata, and a conversations table that stores all the folder structures.
These two tables use composite and partition keys, which allow for efficient queries used in
Lambda. DynamoDB’s autoscaling enables variable usage without manual interception, and
the on-demand pricing complements the nature of the unpredictability of usage upon
release.

A heavily considered alternative was Amazon RDS in union with EC2; however, it was
ultimately deemed not fit based on the application’s needs. | wanted to design DocAl
Organizer as simply as possible, and with the main function of the app not needing complex
database operations or managing backups, DynamoDB’s key-value structure allowed for my
intended function, as simple as possible.

3. Application Architecture

3.1 Architecture diagram

3.2 Programming Languages

HTML, CSS and JavaScript were the programming languages used to create this cloud
application. HTML, CSS and Bootstrap were used for the front-end Ul for the website’s pages,
and JavaScript was used to create the front-end and backend functionality. I’'m familiar with
JavaScript and server-side scripting through class work and even in my personal projects, so
wiring up promises in the front-end JavaScript file and creating the endpoints in the lambda
file that manipulate DynamoDB and S3 came naturally. Notably, the Node.js lambda
backend uses external libraries like brcypt for hashing passwords and to create JWT Tokens
for user authentication; jsonwebtoken was used. To download files following the tree
structure, the front end utilizes the JSZip library.

The lambda function and the front-end all required code, but all the other portions of the
application, like creating a DB was all done via AWS’s console.

3.3 Component Flow

The four components, Lambda, Amazon Simple Storage Service, APl Gateway and
DynamoDB, all work in harmony to fully create the application and keep it running. Firstly,
the APl gateway listens for HTTP requests from the browser. Upon a request, the API gateway
sends an event object to Lambda. Based on the endpoint, Lambda queries DynamoDB for

endpoints that require updating a user’s “conversation,” and/or S3 for endpoints that work
with the actual PDFs stored on the cloud, such as uploading or deleting a file.

3.3.1 Organization Logic

To organize files given a folder structure, the application follows the following process:

1. User uploads a document through the dropbox, which calls a POST endpoint that
passes the document’s file name.

2. Thelambdareturns a generated a pre-signed URL to the user’s S3 folder to upload the
file, which the frontend uses for a direct upload to S3.

3. Upon the organize button being pressed, the browser calls a POST endpoint
specifically for classification, passing the S3 key.

4. The Lambda function validates the S3 key, then calls DynamoDB to parse the tree in
JSON format, extracting all folder paths, and placing them into an array for later
validation.

5. Lambda then calls S3 to retrieve all the PDF’s and translate them into a buffer, to
which the Gemini APl is called with a prompt that organizes each file into a folder in
JSON format.

6. Lambda parses Gemini’s JSON response and validates each output through the
earlier array to catch for hallucinations or poor outputs.

7. Based on the validated response, Lambda calls CopyObject and DeleteObject in S3
to essentially move a file to its correct position.

8. Lambda finalizes by returning the assigned path to the frontend, which refreshes the
file structure to show the now updated locations of files.

3.3.2 Export Logic

To download a tree and export it as a zip file, DocAl Organizer logic starts through a GET
endpoint that returns the metadata for all files. With this metadata, the browser then sends
a POST request to get each pre-signed S3 URL for direct downloading. Each file is
downloaded using FetchAPI, while collecting the bytes that are added to a JSZip instance
with the folder structure extracted from the S3 key path. After all files are added, JSZip’s
generateAsync() function is called, which downloads the documents using a temporary
download link.

3.4 Deployment

Since Lambda used external libraries, externally downloading the files and uploading the
files through the AWS console with node_modules was required. The execution time was set
for 30 seconds to account for the longer execution times made by the backend API call for
Gemini, with memory configured to 512MB to provide enough power for PFD processing and
API calls.

Regarding storage, S3 has default encryption, and the bucket was set to private. CORS was
configured to allow PUT requests from any origin (which would change to the domain upon

release) for direct uploads.

To deploy DocAl Orgnaizer outside of localhost, the website can be hosted through another
S3 bucket that would be configured for web hosting.

4. Security

With an application that works with user documents, security was a major consideration
throughout development. Given the scope of the application, security was focused on three
main areas: protecting user credentials, ensuring authenticated users can only access their
own data, and allowing access to stored documents.

4.1 Database Security

Through my server-side scripting course, | learned a lot about how servers work with
databases that store sensitive data like passwords. Here, | learned about the system of
storing hashes of passwords, comparing a user’s input password, and using the hash
algorithms to see if the input password matches. | implemented this same system with
DocAl Organizer, using the bcrypt hashing algorithm.

Upon user registration, the user’s actual password is never actually stored, as we store their
hashed password with a salt rounds value of 12. The number 12 was chosen to balance
protection and feasibility. This value is big enough for security against attackers, but also low
enough to which hashes are quick. On top of the strong minimum requirements of a valid
password being one uppercase, one number and one special character, registration is
secure, but also feasible.

When the user logs into an account, Lambda retrieves the user record from DynamoDB using
the email index, and calls bcrypts native method to compare the input password with the
stored hash. If the credentials match, users are navigated accordingly, and if they fail, a
vague toast regarding invalid credentials is displayed to provide enough information without
overexposing information.

4.2 Login Security

Since it is built on top of AWS Lambda, a stateless resource, finding out how to implement
log-in functionality while keeping it secure was an important task. To achieve this, JSON Web
Tokens were used to simulate server-side sessions to keep track of who’s logged in, while
keeping security tight.

When users log in, a JWT is created that keeps track of the user’s id, a secret, and the expiry
of the token. This secret is stored on the server side through environmental variables to
validate potentially fraudulent tokens. Once this is returned to the user, the browser stores
it in local storage, and with each subsequent request, this JWT is attached to keep users
authenticated in their accounts.

To decode a JWT on the server, we use the JWT verify function that takes a token and our
secret, from which the secret and expiration are extracted. Depending on whether the secret
matches and the expiration is still valid, the request either passes the check, or a redirection
to the login with a 401 Unauthorized.

This strategy is effective in that it checks for a valid JWT token with every single request, so
not once is there a potential disconnect. It also protects a user’s account from tampering,
as even if an attacker were to decode their token and change the user id, the backend
verification of the secret fails immediately. With a 7-day expiration of each JWT, users can
gracefully use DocAl Organizer without needing constant authentication, all while
potentially compromised tokens that are past die.

4.3 Storage Security

Now that users can be authenticated securely, another big security task was finding a secure
way to store the documents and PDFs of users. Thankfully, S3 did a lot of the work natively,
and it was just a case of wiring them up together.

The S3 bucket was configured as private with block all access enabled, which allows for no-
one being able to access the contents directly. With pre-sighed URLs, temporary URLs that
work for a couple of minutes for that user’s specific folder in which their data is stored, this
allowed for keeping the bucket private, however, leaving openings for users to still be able to
interact with it for actions such as uploading or deleting files. These URLS are generated only
after validating that the S3 key belongs to the authenticated user’s conversation. By default,
these URLs expire after 5 minutes, ensuring we follow the minimum privilege with the
minimum time security philosophy.

4.4 Security Vulnerabilities

Despite the current security measures, there is still one big security issue that should be
solved prior to public use. Currently, any user can use DocAl Organizer as many times as
they want. An attacker could exploit this gap to spam the endpoint in which the API call to
Gemini is made, which would ramp up costs significantly or even DDoS the application
entirely. Rate limiting is an industry standard for Al applications such as DocAl Organizer that
explicitly prevents this issue. Further research is required to implement such a technique
with our current architecture.

5. Cost Metrics

5.1 Upfront Cost

The upfront cost of DocAl Organizer is $0. To create the cloud application, the free trail AWS
Learners Labs was used, which contains $50 in free credits. Each service used (Lambda, API
Gateway, S3 and DynamoDB) uses the $50 credit before external payment, alongside any
cost of the API call for the backend Al model Gemini Flash 2.5, which would increase the
cost of DocAl Organizer.

Using Lambda for the backend of the code allows for zero servers to buy and use to develop
the code, which means zero upfront costs to create the product. Unlike other services that
use servers, which scale with time rather than usage, Lambda offers the first one million
requests for free with zero other fees attached [1]. Given that less than one million requests
were made to develop DocAl Organizer, no fees were charged upon the Learner’s Labs
credits.

Using APl Gateway to route and listen for HTTP requests is extremely affordable. With their
free tier, they allow for one million API calls for free each month [2]. Given that fewer than
one million requests were made for the development, no fees were incurred on the Learner’s
Lab free credits.

Unlike the other services used, DynamoDB doesn’t offer a certain number of requests for
free; however, the cost for the number of requests made for development was negligible.
With the cost for 100 reads being $0.000025, and the number of reads being used for
development, this number is extremely close to nothing [4]. For simplicity, the cost of using
DynamoDB will be rounded down to $0.

S3 follows the same sort of format as DynamoDB, in the sense that no free uses are offered
[5]. S3 storage costs $0.023 per GB per month for the first 50TB, with additional charges of
$0.005 per 1000 PUT requests and $0.0004 per 1000 GET requests[5]. Given the size and
number of files used to test DocAl Organizer, the cost amounts to pennies towards the
Learner’s Lab free credits, in which this value is also rounded to $0.

Lastly, Gemini’s 2.5 Flash API offers a free tier that was used for development, that allow for
1500 requests per day, which was more than enough for development and testing [6].

5.2 Ongoing Costs

For the ongoing cost, we will assume that there will be 1000 active users monthly who use 2
conversations with 20 PDFs with 2 API calls for Gemini per month. By these metrics, we
assume the worst-case scenario for each service to ensure a buffer is present.

Lambda Compute at the worst case, would receive 100K requests, with 512MB and 500ms
average duration. Pricing per request is $0.2 per 1M requests, which would cost $0.02 cents
for 100k requests [1]. Pricing for the computation in comparison is much higher, with 100K *
0.5 * (0.5/1)= 25,000 seconds of computation needed. Lambda’s standard x86 price is
around $0.00001667, meaning that the computational cost is approximately $0.42 a month
[1]. The total cost needed for Lambda is $0.02 + $0.42 = $0.44 per month.

Given that Lambda, at a worst case, 100K requests, APl Gateway would likely have 100K
requests as well. Their pricing is $1.00 per million requests, and with 100K requests, this
would equate to $0.10 per month [2].

DynamoDB’s worst-case scenario would likely be 2x the requests of Lambda (200K) for
reading, with 50K writes, and 1GB to store user data through tables [4]. DynamoDB’s pricing
for storage is $0.25 per GB, meaning a cost of $0.25. Writing costs $1.25 per million, and with
50K writes, this equates to $0.06 per month [4]. Reading costs $0.25 per million [4]. For 200K
reads, the cost amounts to $0.05, meaning DynamoDB costs $0.25 + $0.06 + $0.05 = $0.36
per month.

Assuming that S3 at a worse case, needs 10GB storage, with 20K PUT and 100K GET
requests, the cost breakdown is as follows. S3 costs $0.0023 per GB, meaning that for 10GB
it would cost $0.23 to store all user documents [5]. PUT is $0.005 per 1000 requests,
meaning a cost of $0.10, and GET is $0.0004 per 1000 requests, meaning a cost of $0.04 [5].
The total cost of S3 would be around $0.37.

Given Gemini API’s free tier that allows for 1500 free requests per day, 45,000 free requests
a month, this allows for a huge buffer when only estimating 20,000K requests per month [6].
This would cost $0.

In total, to keep DocAl Organizer ongoing with 1000 monthly users, it would cost $0.44 +
$0.10 + $0.36 + $0.37 = $1.27 a month at the worst case. The actual cost would likely be
much lower than this, meaning an extremely affordable ongoing price.

5.3 Additional Costs

There are a couple of other things to consider for public release, which has its own separate
benefits and costs. CloudWatch Logs allows us to look at any logs made by Lambda to catch
any errors or bugs, with real-time monitoring, audit and security. It allows us to oversee
almost everything done, which could help with debugging errors or finding security gaps. The
cost of CloudWatch is 0.50GB per GB, and with 1000 users monthly, these logs would cost
us close to nothing [7]. Secondly, buying our own domain helps more users access our
website more easily and portrays professionalism. Buying a .com domain would cost, at the

worst-case scenario, around $100 a year, and with the cost of Route 53’s 25 hosted zones
being $0.5 a month, this would cost us approximately $16.70 a month [8].

5.4 Cost Comparison

Since EC2 was the most heavily considered alternative service used, we will compare the
cost of the current architecture of the serverless Lambda + DynamoDB with EC2 + RDS.
Since the main operations of the application aren’ttoo heavy on computational power, a safe
and conservative EC2 instance would be t3.micro when running 24/7 with a 1-year reserved
instance pricing. would cost around $10 a month alone [9]. Adding RDS would cost at worst
case $20 per month for a db.t3.micros instance [10]. This approach would cost around $30
a month, which is significantly more expensive than the current architecture and likely more
inefficient.

Given the nature of document organization being a task, Lambda fits the use case perfectly.
The baseline cost while idle using Lambda is near-zero, and it scales perfectly well as usage
grows. The serverless approach costs $1.27, whereas the EC2 + RDS approach costs 23
times more for the same functionality. The only way | see this approach becoming cheaper
than the current structure is if website traffic becomes extremely high. For the current plan
for DocAl Organizer, Lambda makes the most sense.

5.5 Cost Optimization

With the current state of DocAl Organizer, there are two big optimizations that could
significantly reduce the cost of ongoing costs. Right now, there is no way for users to delete
their accounts. This functionality could open space in S3 as well as DynamoDB, which could
also reduce the cost of holding that user’s data. Another big optimization that could play a
bigger role in reducing cost is batch Al processing. Right now, Gemini handles a single file at
a time when organizing, which is not as efficient nor cost-effective as doing multiple files at
a time. This would significantly lower the number of API calls, which then leads to lower
costs.

6. Evolution

Given the nature of this cloud application, and the technology stack of Lambda, S3,
DynamoDB and API Gateway, a lot of this cloud application is complete. All four
technologies have auto-scaling capabilities, so in the case that thousands of users start
using DocAl Organizer every day, these technologies can scale up with almost zero
complications.

6.1 Technical Debt

There is one important feature to add in the future. Currently, there is no way for a user to
reset their password in the case that they forget it. This is an extremely common feature for
almost every service online, so this is the biggest priority to add in the future. Unfortunately,
due to technical debt, it could not be implemented by the due date, as the core flow and
other user stories took a lot of refining. To implement a forgot password functionality, a new
AWS service called Simple Email Service (SES) would be implemented. SES is commonly
used in the industry to send transactional emails like receipts and marketing emails like
newsletters, and even the exact functionality I'm looking to implement, a reset password
email. SES works in harmony with the current stack as it can be directly used in lambda, is
extremely cheap, and it follows the serverless architecture DocAl Organizer currently has, as
SES doesn’t have an email server to manage like other alternatives.

6.2 Future Proofing

With the advancements of Al seemingly being exponential with each passing year, it won’t
be long until a model that outperforms Google Gemini’s 2.5 Flash with higher accuracy and
cheaper rates is available. This new hypothetical model will replace the current model to
ensure that this application stays up to date with technological advancements and doesn’t
become obsolete. This loop of replacing the underlying Al model until a better alternative is
available will continue until the discontinuation of DocAl Organizer.

6.3 Final Remarks

| believe that with this application being a document organizing Al, it’s important to stay true
toits function. A lot of services like to become bigger than their original purpose, which leads
to a degradation in the quality of the function they were first set out to perform. This is for
organizing documents, and that alone. We want one working tool over multiple fewer
effective tools. Staying true to the function of this website is important. The design
philosophy of this cloud application is that less is better, and because of this, future features
are sparse to ensure DocAl Organizer’s primary function is as good as it can be.

Bibliography

[1] AWS, “AWS Lambda - Pricing,” Amazon Web Services, Inc., 2024.
https://aws.amazon.com/lambda/pricing/

[2] “Amazon APl Gateway Pricing | APl Management | Amazon Web Services,” Amazon
Web Services, Inc. https://aws.amazon.com/api-gateway/pricing/

[3] Amazon, “AWS Free Tier,” Amazon Web Services, Inc., 2019.
https://aws.amazon.com/free/

[4] “Amazon DynamoDB Pricing for On-Demand Capacity,” Amazon Web Services, Inc.
https://aws.amazon.com/dynamodb/pricing/on-demand/

[5] AWS, “Amazon S3 Pricing,” Amazon Web Services, Inc., 2025.
https://aws.amazon.com/s3/pricing/

[6] Google, “Gemini Developer API Pricing,” Google Al for Developers, 2025.
https://ai.google.dev/gemini-api/docs/pricing

[7] “Amazon CloudWatch Pricing - Amazon Web Services (AWS),” Amazon Web
Services, Inc. https://aws.amazon.com/cloudwatch/pricing/

[8] AWS, “Amazon Route 53 pricing - Amazon Web Services,” Amazon Web Setrvices,
Inc. https://aws.amazon.com/route53/pricing/

https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/api-gateway/pricing/
https://aws.amazon.com/free/
https://aws.amazon.com/dynamodb/pricing/on-demand/
https://aws.amazon.com/s3/pricing/
https://ai.google.dev/gemini-api/docs/pricing
https://aws.amazon.com/cloudwatch/pricing/

